How to Do Word Problems

In this topic, we concentrate on a whole which is given in the form of some relationship amongst its parts. The main idea is that the whole is always equal of the sum of its parts.

Part	+	Part	$=$	Whole
The number of female students	+	The number of male students	$=$	The total number of students
The number of nickels	+	The number of dimes	$=$	The total number of coins
The number of red balls	+	The number of green balls	$=$	The total number of balls

Example:

There are 32 students in the classroom. The number of female students is 4 fewer than twice the number of male students. How many female students are in the classroom?

Solution:

The parts on this problem are the number of females and the number of males, so if we let x be the number of males students, then the number of female students should be $2 x-4$ based the information provided.

Part	+	Part	=	Whole
The number of female students	$+$	The number of male students	$=$	The total number of students
$2 x-4$	+	x	$=$	32

Solution(continued):

$$
\begin{aligned}
2 x-4+x & =32 & & \text { (Original Equation) } \\
3 x-4 & =32 & & \text { (Simplify) } \\
3 x-4+4 & =32+4 & & \text { (Addition Property) } \\
3 x+0 & =36 & & \text { (Inverse \& Simplify) } \\
3 x & =36 & & \text { (Identity Property) } \\
x & =12 & & \text { (Division Property) }
\end{aligned}
$$

Since the number of female students was $2 x-4$, then we evaluate this for $x=12$, that is $2(12)-4=20$.

There are 20 female students in the classroom.

Example:

Jose has 45 coins in nickels and dimes. The number of dimes is 5 more than three times the number of nickels. How many of each coin does Jose have?

Solution:

The parts on this problem are the number of nickels and the number of dimes, so if we let x be the number of nickels, then the number of dimes should be $3 x+5$ based the information provided.

Part	+	Part	$=$	Whole							
The number of											
nickels	+	The number of dimes	$=$	The total							
number of coins					$	$	x	+	$3 x+5$	$=$	45
:---:	:---:	:---:	:---:	:---:							

Solution(continued):

$$
\begin{aligned}
x+3 x+5 & =45 & & \text { (Original Equation) } \\
4 x+5 & =45 & & \text { (Simplify) } \\
4 x+5-5 & =45-5 & & \text { (Subtraction Property) } \\
4 x+0 & =40 & & \text { (Inverse \& Simplify) } \\
4 x & =40 & & \text { (Identity Property) } \\
x & =10 & & \text { (Division Property) }
\end{aligned}
$$

So Jose has 10 nickels, and since the number of dimes was $3 x+5$, then we evaluate this for $x=10$, that is $3(10)+5=35$.

Jose has 10 nickels and 35 dimes.

Example:

A piece of wood is cut into three pieces. The second piece is 3 times the first piece. The third piece is 10 inches longer that the first piece. Find all three pieces if the wood is 60 inches long.

Solution:

Let x be the length of the first piece, then $2 x$ is the length of the second piece and $x+10$ is the length of the third piece, based the information provided.

Part	+	Part	$+$	Part	$=$	Whole
First	$+$	Second	+	Third $+$ piece	$=$	Total
x	+	$2 x$	+	$x+10$	$=$	60

Solution(continued):

$$
\begin{aligned}
x+2 x+x+10 & =60 \\
4 x+10 & =60 \\
4 x+10-10 & =60-10 \\
4 x+0 & =50 \\
4 x & =50 \\
x & =12.5
\end{aligned}
$$

(Original Equation)
(Simplify)
(Subtraction Property)
(Inverse \& Simplify)
(Identity Property)
(Division Property)

So the first piece is 12.5 inches, the second piece is $2(12.5)=25$ inches, and the third piece is $12.5+10=22.5$ inches.

The three pieces are 12.5 inches, 25 inches, and 22.5 inches.

Example:

Maria is 5 years older than Mike. Mike is 5 times as old as Lisa. How old is Maria if the sum of their ages is 27 years?

Solution:

The parts on this problem are the ages of Maria, Mike, and Lisa, so if we let x be Lisa's age, then Mike is $5 x$ and Maria is $5 x+5$ based the information provided.

Part	+	Part	+	Part	$=$	Whole
Age of		Age of		Age of + Maria	+	$=$
Mike	+	Lisa				

Solution(continued):

$$
\begin{aligned}
5 x+5+5 x+x & =27 & & \text { (Original Equation) } \\
11 x+5 & =27 & & \text { (Simplify) } \\
11 x+5-5 & =27-5 & & \text { (Subtraction Property) } \\
11 x+0 & =22 & & \text { (Inverse \& Simplify) } \\
11 x & =22 & & \text { (Identity Property) } \\
x & =2 & & \text { (Division Property) }
\end{aligned}
$$

So Lisa is 2 years old, Mike is $5(2)=10$ years old, and Maia is $5(2)+5=15$ years old.

Lisa is 2 , Mike is 10 , and Maria is 15 years old.

